

QKD DEVELOPMENT PROJECTS

Elisabeth Andriantsarazo, Tomáš Novák, Josef Vojtěch

CESNET – Optical networks department

16th Apr 2023

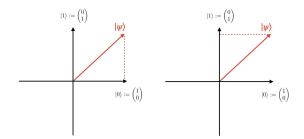
Quick overview of the quantum apparatus Measurement in quantum mechanics

The BB84 protocol

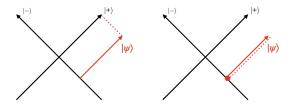
Entanglement Production of entangled particles

The BBM92 protocol Experimental implementation of BBM92 protocol

Classical information	Quantum information
bit	qubit
either 0 or 1	superposition
01	$oldsymbol{lpha} \ket{0} + oldsymbol{eta} \ket{1}$
measurement yields	measurement yields
0 for 0	0 with probab. $ lpha ^2$
1 for 1	1 with probab. $ oldsymbol{eta} ^2$

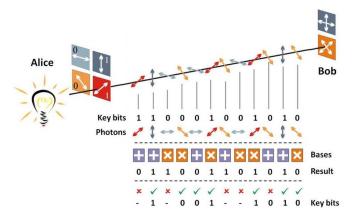

Tab.: Comparison of classical and quantum information.

Measurement


Transition to classical bit

Extraction of 0 or 1 bit from qubit means measuring the qubit in the computational basis.

Measurement


Fig.: Alternative basis: $|+\rangle = |0\rangle + |1\rangle$ and $|-\rangle = |0\rangle - |1\rangle$.

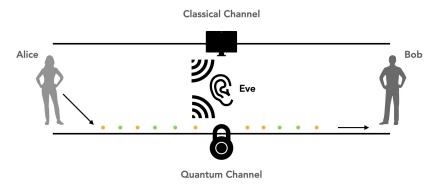
Creating a random outcome

We are able to distinguish only orthogonal states, such as $|0\rangle$, $|1\rangle$ or $|+\rangle$, $|-\rangle$.

Fig.: The BB84 prepare and measure QKD protocol. Alice sends to Bob single photons (or other two-level quantum systems), which Bob then measures and extracts information from them.

BB84

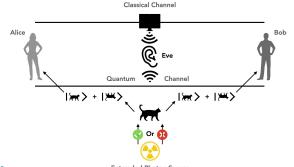
How does the BB84 protocol work?


- 1. Alice encodes her string of bits: 0 as $|0\rangle$, $|1\rangle$ and 1 as $|+\rangle$, $|-\rangle$
- 2. Alice sends her string of states to Bob
- 3. Bob measures each qubit in the $|0\rangle$, $|1\rangle$ or in the $|+\rangle$, $|-\rangle$ basis at random
- 4. Alice anounces her string of bits
- 5. Bob discards any bits where a different basis was used for measurement
- 6. Alice selects a subset of bits to check on eavesdropping by Eve

- 1. Alice tells Bob which bits she selected
- 2. Alice and Bob compare the values
- 3. If:
 - 3.1 an acceptable number of bits agree, they continue with the protocol
 - 3.2 more than an acceptable number of bits disagree, they abort with the protocol
- 4. If (3.1) was the case, they perform privacy amplification on the remaining bits
- 5. Alice and Bob now share completely random and secure secret key

BB84

Fig.: The BB84 prepare and measure QKD protocol. From [2].


From single particles to entanglement

 $\mathsf{BBM92}-\mathsf{proposed}$ by Bennett, Brassard, and Mermin in 1992

- Entangled version of the BB84 protocol
- Two entangled photons used in communication sent by source – Charlie

Entangled Photon Source

Entanglement

Phenomenon of entanglement

particles cannot be described individually

state of one particle determines the state of others Separable state:

$$|D\rangle_1 \otimes |H\rangle_2 = \frac{1}{\sqrt{2}} (|H\rangle_1 + |V\rangle_1) \otimes |H\rangle_2 = \frac{1}{\sqrt{2}} (|HH\rangle + |VH\rangle)$$

Inseparable entangled state:

$$|\Phi^+
angle = rac{1}{\sqrt{2}}(|HH
angle + |VV
angle)$$

If we know the state of one of the particles we know the state of the other

Entanglement

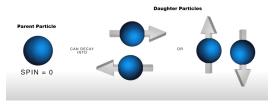
Bell basis of the entangled states

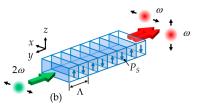
$$|\Phi^{+}\rangle = \frac{1}{\sqrt{2}}(|HH\rangle + |VV\rangle) = \frac{1}{\sqrt{2}}(|DD\rangle + |AA\rangle)$$
 (1)

$$|\Phi^{-}\rangle = \frac{1}{\sqrt{2}}(|HH\rangle - |VV\rangle) = \frac{1}{\sqrt{2}}(|DA\rangle + |AD\rangle) \quad (2)$$

$$|\Psi^{+}\rangle = \frac{1}{\sqrt{2}}(|HV\rangle + |VH\rangle) = \frac{1}{\sqrt{2}}(|DD\rangle + |AA\rangle) \quad (3)$$

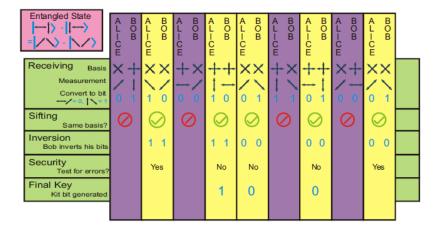
$$|\Psi^{+}\rangle = \frac{1}{\sqrt{2}}(|HV\rangle - |VH\rangle) = \frac{1}{\sqrt{2}}(|AD\rangle - |DA\rangle) \quad (4)$$


We see correlations or anti-correlation of given Bell state in different H/V or D/A basis

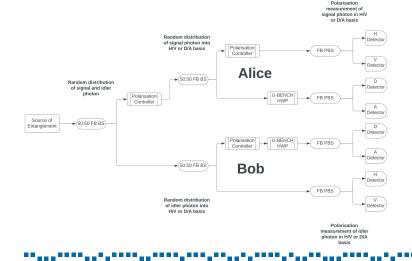

cesnet

Producing entanglement

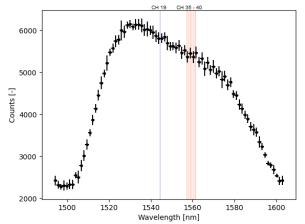
Means of production:


- decay of spin 0 particle into two spin 1/2 particles
- SPDC in non-linear crystals

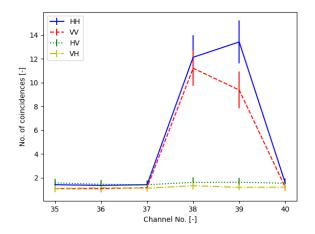
cesnet

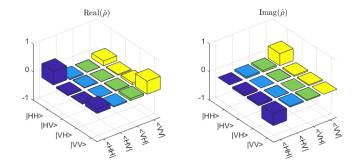


Steps necessary to operate functional QKD protocol


- Random choices of basis at Alice and Bob
- Sifting classical channel communication to decide if the chosen basis were the same
- Error reconciliation as the real-life conditions disturbs the entangled state, errors would be present even without Eva listening
- Privacy amplification sacrificing a piece of the key to produce a matrix, that is multiplying blocks of key
- Quantum bit error rate (QBER) to detect eavesdropper

The final key is about a third of the length of the received correct coincidence counts


Almost all-fibered laboratory implementation


The measured spectrum of the source by a tunable filter. DWDM channels shown

Visibility over the channels of DWDM

Density matrix – reconstruction of state $|\Phi\rangle = \frac{1}{\sqrt{2}}(|HH\rangle + e^{-i\varphi}|VV\rangle)$

Problems

- Polarization changes due to fibered implementation – polarisation controllers
- Chromatic dispersion use of DWDM
- Polarization mode dispersion aligning PM fibers

Results

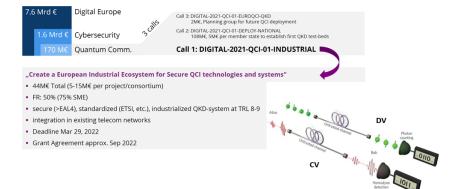
- Average rate of coincidences detected was (275 ± 4) counts/s
- Average QBER was (4.8 \pm 0.7) %
- About **30** % of the bits contributed to the final key rate of (86±1) bits/s

cesnet

Running QKD projects

Network Security in Post-Quantum Era – NeSPoQ (BUT, TUO, CESNET)

- 2021-2025, provider: Ministry of interior CZ
- Practical application of QKD PQCfor links with 100Gbps + traffic
- PQC (post-quantum cryptography) into FPGA hardware
- Application sponsor: National Cybersecurity Burro
 NÚKIB


cesnet

Running QKD projects

CZ-QCI ISI, CESNET, CTU, MU, UPOL, TUO, BTU DIGITAL-2021-QCI-01-DEPLOY-NATIONAL

- Connecting Prague-Brno-Ostrava
- Project starting date: 1st Match 2023
- Project end date: 31 August 2026

Running QKD projects

cesnet

References

Nielsen, M.A. and Chuang, I. (2002)

"Free-Space Quantum Key Distribution."

Carrasco-Casado, A., Fernández, V. and Denisenko, N., (2016)

"Free-space quantum key distribution."

Optical Wireless Communications: An Emerging Technology 589 – 607.

- Picture from Hashdork.com (2023)

"Quantum Entanglement Explained."

[online] https://hashdork.com/ quantum-computing-entanglement-explained/

References

- Ilhwan, K., Donghwa, L. and Kwang, J. L. (2021) "Study of Type II SPDC in Lithium Niobate for High Spectral Purity Photon Pair Generation."
- Picture from Wikipedia.com (2023)

"BBM92 protocol"

[online] https://en.wikipedia.org/wiki/BBM92_protocol